Identification and characterization of the first mutation (Arg776Cys) in the C-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS) associated with type II classical xanthinuria.
نویسندگان
چکیده
Classical xanthinuria type II is an autosomal recessive disorder characterized by deficiency of xanthine dehydrogenase and aldehyde oxidase activities due to lack of a common sulfido-olybdenum cofactor (MoCo). Two mutations, both in the N-terminal domain of the Human Molybdenum Cofactor Sulfurase (HMCS), were reported in patients with type II xanthinuria. Whereas the N-terminal domain of HMCS was demonstrated to have cysteine desulfurase activity, the C-terminal domain hypothetically transfers the sulfur to the MoCo. We describe the first mutation in the C-terminal domain of HMCS identified in a Bedouin-Arab child presenting with urolithiasis and in an asymptomatic Jewish female. Patients were diagnosed with type II xanthinuria by homozygosity mapping and/or allopurinol loading test. The Bedouin-Arab child was homozygous for a c.2326C>T (p.Arg776Cys) mutation, while the female patient was compound heterozygous for this and a novel c.1034insA (p.Gln347fsStop379) mutation in the N-terminal domain of HMCS. Cosegregation of the homozygous mutant genotype with hypouricemia and hypouricosuria was demonstrated in the Bedouin family. Haplotype analysis indicated that p.Arg776Cys is a recurrent mutation. Arg776 together with six surrounding amino acid residues were found fully conserved and predicted to be buried in homologous eukaryotic MoCo sulfurases. Moreover, Arg776 is conserved in a diversity of eukaryotic and prokaryotic proteins that posses a domain homologous to the C-terminal domain of HMCS. Our findings suggest that Arg776 is essential for a core structure of the C-terminal domain of the HMCS and identification of a mutation at this site may contribute clarifying the mechanism of MoCo sulfuration.
منابع مشابه
Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans
Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O(2). The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in u...
متن کاملIdentification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria.
Hereditary xanthinuria is classified into three categories. Classical xanthinuria type I lacks only xanthine dehydrogenase activity, while type II and molybdenum cofactor deficiency also lack one or two additional enzyme activities. In the present study, we examined four individuals with classical xanthinuria to discover the cause of the enzyme deficiency at the molecular level. One subject had...
متن کاملUsing Next-Generation Sequencing to Identify a Mutation in Human MCSU that is Responsible for Type II Xanthinuria.
BACKGROUND Hypouricemia is caused by various diseases and disorders, such as hepatic failure, Fanconi renotubular syndrome, nutritional deficiencies and genetic defects. Genetic defects of the molybdoflavoprotein enzymes induce hypouricemia and xanthinuria. Here, we identified a patient whose plasma and urine uric acid levels were both extremely low and aimed to identify the pathogenic gene and...
متن کاملMolybdenum Cofactor Biology and Disorders Related to Its Deficiency; A Review Study
Background: Molybden, as a vital and essential micronutrient is directly involved in the metabolism of other elements including carbon, sulfur, and nitrogen. Molybdenum alone is not biologically active unless it binds to specific cofactors. Except for the bacterial nitrogenase, which contains molybdenum-Iron complex, molybdenum cofactor (Moco) is considered as the bioactive component placed in ...
متن کاملA frameshift mutation in MOCOS is associated with familial renal syndrome (xanthinuria) in Tyrolean Grey cattle
BACKGROUND Renal syndromes are occasionally reported in domestic animals. Two identical twin Tyrolean Grey calves exhibited weight loss, skeletal abnormalities and delayed development associated with kidney abnormalities and formation of uroliths. These signs resembled inherited renal tubular dysplasia found in Japanese Black cattle which is associated with mutations in the claudin 16 gene. Des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular genetics and metabolism
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2007